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I. INTRODUCTION

Let C[a, b] denote the space of real valued continuous functions,f, defined
on the compact nondegenerate real interval [a, b]. For IE qa, b] the norm
ofI is defined by I1III = max,"~xC;;b i!(x)i. Let W denote a finite dimensional
subspace of qa, b]. The function 7T E W is a best approximate to I Eo qa, b]
from Wif

ill ~ rr II ,c:;; I -- IV ii,

for all WE W. If the inequality is strict for all WE W, Wi~ rr, then 7T is a
unique best approximate tor from W. Further, if for IE qa, b] there exist
rr E Wand a positive number r, depending only on j; such that

ii/- w,i If - rr +- r 'I 7T .- W Ii,

for all 11' E W then 7T is said to be a strongly unique best approximate to I
from W. An n-dimensional subspace W of qa, b] is called a Baar subspace
if no nontrivial WE W vanishes at more than 11-- 1 distinct points of [a, b].

[n 1907 J. W. Young [5] proved that if W is a Haar subspace then every
element of qa, b] possesses at most one best approximate from W. Jn 1918
A. Haar [2] proved that if every element of CIa, b] possesses a unique best
approximate from a finite dimensional subspace W then W is a Baar subspace.
Thus a necessary and sufficient condition that every element of qa, b]
possesses a unique best approximate from a finite dimensional subspace W
is that W be a Haar subspace. (It is known that every element of qa, b]
possesses at least one best approximate from W.)

In 1963 D. J. Newman and H. S. Shapiro [4] proved that every element of
qa, b] possesses a strongly unique best approximate from a Haar subspace
of qa, b]. Since a strongly unique best approximate is also a unique best
approximate it follows that a necessary and sufficient condition that every
element of C[a, b] possesses a strongly unique best approximate from a finite
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dimensional subspace W is that vV be a Haar subspace. Thus if every element
of C[a, b] has a unique best approximate from a finite dimensional subspace
W then in fact every element of C[a, b] has a strongly unique best approximate
from W.

]1' there exists more than one best approximate tofE qa, h] from a sub­
space W then no one of these best approximates can be a strongly unique best
approximate. A natural question is the following: for what subspaces W is it
true that every element of C[a, b] which possesses a unique best approximate
from W also possesses a strongly unique best approximate from W? The
purpose of this note is to characterize such subspaces.

2. MAIN THEOREM

THEOREM. Every element 0/ C[a, b] which possesses a unique best approxi­
mate fronz a .finite dimensional subspace W also possesses a strongly unique
best approximate from W if and only if ~y is a Haar subspace.

The necessity part of this theorem is a corollary of the more technical
Theorem 1 below. The sufficiency follows from the theorem of Newman and
Shapiro referred to earlier.

The following lemma which is essential to the proof of Theorem I is given
in [I].

LEMMA I (Generalized Kolmogorov Criterion). LeI fE qa, b]. W be a
subspace of qa, b], and 1T E W. The real number r :?: 0 satisfies

- )i' .f iT ! r:1 'IT ----. lV II,

for all W E W if and only if

max If(x) -- 1T(X)] lV(X) I' I - 1T W Ii ,
xEA

for all w E W, where

A {x E [a, b]: j(x) -- 1T(X): iii -- 1T I].

The following definitions are needed. For g(x) E C[a, b],

Z" {x E [a, h] : g(x) 0'J

sgn g(x)
I.
0,
J,

g(x) O.
g(x) = 0,
,~(x)· O.
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For WI"'" W n E C[a, b],

<WI ,00" ll'n) = {g(X) E qa, b]:

n

g(X) = L a;w;(x), al '00" an real constants}.
te-=!

For fE C[a, b],

AU) = A = {x E [a, b]: ]f(x)] = r:!D,
Tf = {7T E W: ilf - 7T II U - w I! for all WE W}.
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We say the function f(x) defined on a subset P of [a, b] can be extended
continuously to [a, b] if there exists lex) E qa, b] such that f(x)~c J(x)
for x E P. For convenience, we call the continuous extension f(x).

The proof of Lemma 2 follows from elementary arguments which we omit.

LEMMA 2. Assume the real-valued function f(x) has been defined contin­
uously on a set G C [a, b] such that G is the union of a finite number of closed
connected sets of [a, b]. Assume also that If(x)1 I on G. Then f can be
extended continuous~y to all of [a, b] in such a way that ]f(x)] < I on
[a,b]-G.

The proof of Theorem J is by induction. The proof for n c= I is given in
Lemma 3.

LEMMA 3. Let °c;c w(x) E qa, b]. Assume the subspace W is not
a Haar subspace on [a, b]. Further, assume that the real-valued fill1ction f(x)
has been defined on a finite number of points of [a, b], all contained in Z".,
such that] f(x)[ == I for every x at which f is defined. Then f can be extended
continuously to [a, b] in such a way that the unique best approximate to ffrom W
is not a strongly unique best approximate.

Proof Without loss of generality we assume 'I W Ii = 1. Since W is not
a Haar subspace on [a, b], Zw , the zero set of w(x) is not empty. Choose
X o E Z", such that w(x) =/c 0, x 7'-' XO , x in some sufficiently small closed
connected nondegenerate half-neighborhood of X o , contained in [a, b]. Call
this neighborhood N(xo). Without loss of generality, we assume N(xo) was
chosen small enough such that there exists x' E [a, b] - N(xo) such that
w(x') O. It may be thatf(xo) has been previously defined to be + I or -I
by the hypothesis of the lemma; if not, define f(xo) = +1. Without loss of
generality, assume sgn w(x) ="' sgnf(xo) .= f(xo) in N(xo) - {xo}' We
constructf(x) on {x'} U N(xo) as follows:

f(x) = f(xo)[l - w2(x)],
j(x') = ~sgn w(x').

X E N(xo),
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The function f(x) is defined on {x' j u N(xo) and possibly on a finite
number of points of Z,c, as in the hypothesis, so by Lemma 2, we extend
fIx) continuously to [a, b] so that' f(x): < I on [a, b] ({x'] U Zu)' There­
fore, ,~ I, {xo , x'} C A, and A C {x'} U Zn.. Now we show that
Tf = {OJ.

Let a be a real number. Suppose aw(x) ~ Tf Then aw(x)I: 1 since
lif-- °II l. If a 0, J(x') -- aw(x') [I a I w(x') I l. If a < 0,
in N(xo)-- {xo} we have fIx) - aw(x)! 'f(xo)[1 w"(x)]- Glv(x)]
11 - 11'2(.1)- a I W(X) I I for 0·:: w(x)1 -a. Hence a °and °is
the unique best approximate to[from JY.

To see that °is not a strongly unique best approximate, we check the
generalized Kolmogorov criterion. We have

max (f(x) - 0) w(x) = max {O,f(x') w(x'):
xEA

= max {O, -sgn \1'(.1') . w(x')} = 0.

Therefore the generalized KolmogoroY criterion,

max (f(x) - 0) )\'(.1) ;.-- 1'1 Iii i W Ii for every IV E W,
xEA

for some I' > 0, fails to hold.

THEOREM J. Let It\(X), ... , wn(x) E qa, b], be linearly independent fill1ctions.
Assume the subspace W =, <WI"'" wn> is not a Haar subspace on [a, b].
Further, assume that the real-valued function fIx) has been defined on a finite
number of points of [a, b], all contained in n7~1 ZW

i
' such that I f(x)i .~~ Ifor

each x for which f is defined. Then f can be extended continuously to [a, b]
in such a way that the unique best approximate to ffrom W is not a strongly
unique best approximate.

Proof The theorem is proved for n I in Lemma 3. Here we assume
n 2. We assume the theorem has been proved for k = J, 2, ... , n -- I; i.e.,
if TV is a k-dimensional subspace which is not a Haar subspace, k 11 -- I,
and fIx) has been defined on a finite number of points of [a, b] as in the
statement of the theorem, thenf(x) can be extended continuously to [a, b]
such that the unique best approximate to f from W is not strongly unique.
We then show that the theorem can be proved for the case where W is an
n-dimensional subspace which is not a Haar subspace.

Without loss of generality, assume I' Wi C~ I, I :( i n. Further,
without loss of generality, we assume wn(x) = °on {Xl'"'' Xn}, n distinct
points of [a, b]. Consider the subspace Wj (WI'"'' Wn ]f WI is not
a Haar subspace on {Xl , ... , xu} then we can choose a basis for WI' WI', .. ·, 11';'1
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and a rearrangement of the points {Xl"'" x n }, namely {xt', ... , x n '}, such that
W~_I(X) = 0 on {Xl',,,,, X~_I}' For convenience we drop the "''' notation
from the functions WI', ... , W~_2' and from the points xt', ..., x n '. (We keep
the "''' on W~_I(X),) Consider the subspace ~V2 = <WI'''', Wn - 2). If W2 is not
a Haar subspace on {Xl'"'' Xn- I} then we can choose a basis for W2 ,
WI', ... , W~_2 and a rearrangement of the points {Xl'"'' x n - I }, namely
{Xl'"", X~_I}' such that W~_2(X) = 0 on {Xl',,,,, X~_2}' For convenience we
drop the "''' notation from the functions }I,!', ... , W;'_3 , and from the points
Xl', ... , X~_I' Continuing in this manner as long as possible, we define
}I'n, W;'_l , ... , W~+l' where 0:(; k :(; n -- 1, inductively as above. When
k ,-= Il - 1 the set Wn , W~_I , ... , w~+l reduces to the single function W n •

There are the following two cases to consider:

(1) The integer k is such that I k ,~ n -- I and such that <WI'"'' WI:)

is a Haar subspace on {Xl"'" XkII }.

(1I) The integer k as defined above is O. Hence for every j,
I j ~:;; n - I, <WI ,... , w) is not a Haar subspace on {Xl"'" Xj!I}' In
particular, we have <wl(x) is not a Haar subspace on {Xl' xJ.

Case 1. The integer k, I :(; k :(; n - I, is such that (WI, ... , Wk)

is a Haar subspace on {Xl'"'' Xk+l}' and when k < II -- I, we have
(WI'"'' WI' , W~+l , ... , w;,+;) is not a Haar subspace on {Xl'"'' Xk-tj+l} for
every j such that 1 j z:; II - k - 1. Note that our subspace W has as its
basis the functions WI'"'' Wk , W;;+I ..... W;'_l , W n • We now drop the "'"
notation from the functions W;',I , ... , W;'_l . We note that the definition of k,
I <: k :(; II - I, insures that all the functions Wlc+I(X),,,,, wn(x) vanish on the

set {Xl'"'' Xk+I}'
Since <WI'"'' Wk) is a Haar subspace on {Xl'"'' Xkll}, it follows directly

from the definition of a Haar subspace that we can interpolate at k points of
the set {Xl'"'' Xk+I}' Let w/(x) E <WI'"'' WI), I 0:::: i :(; k have the following
values:

W I'(Xk+1) =c I;
H'2'(Xk+l) = I;

WI'(X;) = 0,
w2'(x,.)cc 0,

i c/= I, k + 1,
2, k + I,

i .1- k, k + 1.

We note that W/(Xi) is unspecified, but we know that w/(x;) =P 0, 1 Z; i :(; k,
since if not, the Haar condition on <WI'"'' H'k) would be violated. Since
WI', ... , WI:' are linearly independent on {Xl'"'' Xk-Tl}, they are linear.ly inde­
pendent on [a, b]. Thus, without loss of generality, we assume w/(x) == Wi(X),

1 :::; i ;:;; k. We constructf(x) on {Xl"'" Xk+l} C n;~k+l Z,r, as follows:
J

f(Xi) = sgn Wi(X,),
f(Xk+l) = -1.

10:::: i 0:::: k,
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We remark that in this step f(x) has been defined to be +- I or-I only on
a finite number of points of n~~k-ll ZII' . We constructfcontinuously on the
remainder of [a, b] such that Ilfll ' "-= I,' 0 is the unique best approximate tor
from W' =c (Wi,H ,... , wn ), an n - k "dimensional subspace of C[a, b],
and such that 0 is not a strongly unique best approximate from W'. Since
1 11 - k 11 ,-~ 1, this is possible by the induction hypothesis.

Let ai, 1 i n be real numbers and suppose w(x) L;'] aiw,(x) E TI
Then we know IJ -~ WII I, since !If -- 0 ,= 1. If ai < 0 for some
i === I, ... , k, then

If(x;) - W(Xi) I = I sgn w,{x;) - aiw;(x,ll c= II~ ai I W,(Xi) I > I.

Hence we have ai :?o 0, 1 k. But

! f(Xk+l) - w(x i.+])! = I-I - i ai I= I +- i ai > I if ai :> 0
l=l £::-.;;1

for some i == I, ... , k. Hence ai 0 for all i ~ I, .... k, and w(x) has the form
w(x) L:'~ki] aiwi(x), Hence we seek the best approximation to f(x) from
W'= (Wi,'O] ,... , But by the way f was constructed. this is 0: hence
ai =c 0, k +- 1 11, and the proof for Case I is complete.

Case H. There is no integer k, I k 11-- I such that (11'] .... , 11'/,'>

is a Haar subspace on {Xl •...• Xi, ill. « WI .... , is the subspace that results
after 11- k steps in the constructive process described earlier and {Xl"'" Xl/Col)

is the corresponding set of points.) We have is not a Haar subspace on
{x]' x 2}, and all the functions w2'(x), ... , 1I';'I(X), wll(x) vanish on {XI' x 2}.

We drop the '"'' notation from the functions w/, ... , w;, I ' Without loss of
generality, assume w](x]) .== O. Hence Xl E n;'=] Z", .

Case A. We assume that for some k E {I, .... Il}, the set

contains at least two distinct points of [a, h]. Denote these points by -Xi, and
Xk" We construct( on {.x/,: , Xi,'} c n;'l.i Z"'i as follows:

f(.XiJ = sgn W/,(.XiJ,

f(Xi/)==~sgn It'/,:(XIo"),

In this step. f(x) has been defined to be -'-1 or I on a finite number of
points of n7l.i!k Z"" We construct f continuously on the remainder of
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(a, b] such that 11111 = 1, 0 is the unique best approximate to 1 from the
II -- 1 "dimensional subspace W' = <WI"", Wk-l , Wk+l ,.", wn ), and such
that 0 is not a strongly unique best approximate from W'. This is possible
by the induction hypothesis.

Let ai, 1 ::;; i ::;; n, be real numbers. Suppose w(x) = L:~~1 aiw;(x) ETf
Then if a" < 0, If(xk) - W(X.,) I == I sgn Wk(XIJ - akwk(xlJi > 1, while if
ak > 0, If(Xk') - w(xk')1 > 1. Hence ale = 0, and w(x) has the form
w(x) == L:~::~ aiwlx) +- L:;~k+1 aiwi(x), Hence we seek the best approximation
to f(x) from W' = <11'1'"'' Wk - 1 ' WkH ,... , wn ). But by the way 1 was con­
structed, this is 0; hence ai = 0, 1 i < fI, and the proof for Case A is
complete.

Case B. Assume the set (Zw n .-. n Z'" n Z", n· .. n Z'" ) - Z'"
1 1-1 t+l n"

does not contain at least two distinct points of (a, b) for any i == 1, ... , n.
We show that in this case, we can assume, without loss of generality, that
(Z". n ... n Z'" n Z'" n .. · n Z", ) -- ZI(' contains exactly one point

1 .-1 r+l n I.

for every i c.= I, ... , n. To see this, suppose (Z"'2 n ... n Z,,) - Z"l = 0.

There exists Xl' E [a, b) such that WI(XI') cF 0. Let 1 == {i oF I: Wi(X1') cF a}.
By our assumption, I cF 0. For each i E 1, let (Xi cF 0, fJi cF °be chosen such
that (X,Wi(Xt') +- fJiWi(X1') = 0. Then we choose as our basis functions for W
the following functions:

Wi(X), i ¢: I,

wJx) = (XiW;CX) -;-- fJ,li'i(X), i E 1.

This is possible since the functions wi(x), i ¢' 1 and Wi(x), i E 1 are all linearly
independent. For convenience, we drop the "-,, notation. Then we have
W1(X1') =f:. °and Wi(XI') === °for 1 < i "'; n. Now suppose we have that the set
(ZII'l n n Z"'H n ZWi+l n ... n Zw) - Z"" contains the point x/ for every
i == I, , k - 1, where 2 < k::;; n. Suppose also that

There exists Xk' E [a, b] such that W,lXk') oF 0. Let 1= {i oF k: WJXk') cF O}.
By the assumption, 1 cF 0. For each i E I, let (Xi cF 0, fJi =/= 0 be chosen
such that (XiWk(Xk') +- fJiWi(Xk') = O. We choose as the basis functions for W
the following functions:

wJX), i ¢ J,

Wi(X) = (XiWk(X) +- fJiWi(X), i E 1.

This is possible since the functions w;(x), i ¢ 1 and Wi(X), i E I are all linearly
independent. Then we have Wk(Xk') cF 0 and Wi(Xk') = °for i E 1, 1 :oS; i < n,
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and w;(x,,') 0, i k, i 1: 1,1 n. Also w/x,') (XiW,,(X/) f3iW,(X/)
f3iWi(X/) cF 0 for i E I, 1 i :c;:; k - ! and Wi(X,')1= 0 for i ¢: I, 1 i
k - 1. Further, wi(x/) == !XiWk(X/) /3 iw,.(x/) == 0 for i E I and wi(x/) 0
for i ¢: I, for every i ;Ie), i,) J..... k J, For convenience, we drop the
"-,, notation from Wi(X), i E I. Hence we have

By the induction hypothesis, we conclude that

holds for every i =, I, ... , 11. If one of the above sets contains more than
one point, Case A applies. Hence, we have without loss of generality, that
(Z"'1 n ... n Z,I,_1 n Z"'I+1 n ... n Z"') - ZW

i
== {x,'} for every i c= 1..... 11.

Without loss of generality we assume IIII', II J holds for every 1 i 11.

We now claim that without loss of generality we can assume that for each
1, ... ,11, there exist at most 11 -- J points of [a, b] where wi(x) •.= 0 and

wlx) O. each) i. Suppose for some i there exists a set of 11 point
{Xl'"'' x,J such that w;(x) 0 on {Xl ......X',,: and for some) i, wlx)L 0
on {'X'l , , .X',,). We show that then Case I applies. Indeed, we have lI'i(X) 0
on {Xl , X'n}. We relabel the functions WI' .... II'n so that wj(x) wJ(x) and
)l',.(x) w,,(x). The relabeling of the functions wdx). k i.) as w~ ,.... W" I

is arbitrary. Hence we have W (WI ....' wn>where w,,(x) 0 on {Xl"'" xn}
and wI(x) 0 on {Xl ,... , .X'n}. We drop the ,,_., notation for conve­
nience.

Consider the subspace ~VI (Wi' .... )l'n-l)' If WI is not a Haar subspace
on {Xl' .... XII} there exists II';/-l E WI such that W~_l(X) vanishes on
{x/ ..... X;'l} C {Xl .... ' Xn}' Since wI(x) and ll';'I(X) are linearly independent
on [a, b]. we extend them to a basis of ~'VI (WI' 11'2'.... ' 11';'_1;' We drop the
"''' notation from the functions and the points for convenience. Consider the
subspace ~V2Wl , ... , IVn2:. If W2 is not a Haar subspace on {Xl ..... xnl:.

there exists W;,_2(X) E W2 and {Xl" .... X;,_2] C {Xl'"'' X"I) such that
W~_2(X) 0 on {x/, ... , X;'2}' Since wl(x) 0 on {Xl" .... X;,_2}' lI'j(x) and
W;'_2(X) are linearly independent on [a, h], so we can extend them to a basis
for W2 • Let the functions WI ' II'~' .... , 11';'2 form the basis. For convenience
we drop the "''' notation.

We continue to define 1\'" , H'"j , ... , H'" where 2 kill inductively
as above as long as possible. Since I\'I(X) 0 on {Xl ,... , x,,}, we know that if
in the process described above there exists no k I such that (1\\ ..... )1'1,'\ is
a Haar subspace on {Xl ,... , X"'1} it is true for k J. i.e..w j ) is a Haar
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subspace on {Xl' X2}, and hence Case I applies. Thus in Case n we have the
following two properties:

(1) (n:'d,iiic Z,,) - Z"k = {XI;'} for every k, 1 k 11,

(2) For each i, there exist at most n - 1 points where w;(x) = 0 and
Wj(x) -F 0 each j =F i. I; i, j •.S; 11.

(We note that Case II is characterized by the fact that n:~l Z", -F .)
Choose any point where WI(X) does not vanish. For explicitn~ss, we choose

Xl" Let Xn+1 be a closest point to Xl' from n:'~l Z" . The point X"-fl exists
since n:~l Z", is a closed, nonempty set. '

We show that there exists some closed connected nondegenerate half­
neighborhood of X n+!, Nl(Xn~l)' contained in [a, b] such that H'1(X) 0 in
N1(xnl) - {x n+1}' If not, then in the interval between x/ and Xn'l' H'l(X)

must have an infinite number of distinct zeros; call them {Z,};:l . Then the
functions 11'2"'" 11' n are each nonzero on at most /1-- 1 points of {Zi};~l '
Hence all the functions 11'2 , .. " H'" are zero on all but at most (n --- 1)2 points
of {ZJ;:l' But then Xl/+1 is not the closest point of n;'~l Z". to x/. Hence
H'l(X) has a finite number of zeros between x/ and X nd .' and for some
sufficiently small nondegenerate half-neighborhood of xi/ '1. Nl(xn1 ),

contained in [a, b], wl(X) d= 0 in N 1(xrH ) - {xnH }. Since the function
wj(x) 0 in N l (xn+1), each of the functions W 2 , ... , W n has at most /1- I
zeros in N1(xn+1) because of property (2) above of the subspace W. Hence
there exists a sufficiently small connected closed nondegenerate half­
neighborhood of Xn+1 , N(x n+1), contained in [a, b], such that w;(x) 0 for
x E N(xn+l) - {xn+1} holds for every i 1, ... , /z.

It may be thatf(xn+1) has been previously defined to be -1-1 or -I: this is
possible by the hypothesis of the theorem, since X n+1 En~~l Zw' If not,
define f(x n+1) to be -i-I. Without loss of generality, assume sg~ w;(x) =

-f(x"~l) for x EO N(xn+l) - {xn+1} holds for every i = 1, .. ,,11, We construct
fix) on {Xl'"", x n'} U N(xn" l) as follows:

f(x.;') = sgn ll'i(X;'), i = 1, ... ,11,

As in Lemma 2, we extend fix) continuously to [a, b] such that Ilfll = 1,
and I f(x) I < 1 except possibly for some of the points of Z" U {X'I}; all the

1

extreme points of fix) - 0 are contained in the set ZIl' U {Xl'},
1

Let a;, 1 ~ i ~ n, be real numbers. Suppose w(x) = L~~l aiw,(x) EO Tf
Then !if - wII ~ 1, since iff - 0 II = 1. If ai < 0 for some i == 1, ... , n, then
11(x,') - w(x/)i = 1sgn Wi(x.;') - ai11';(x/) [ = II - ai I Wi(x.;') II > 1. Hence,
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ai ?: 0 for every i = 1,... , n. However, if ai" > 0 for some k, then III

N(xn+l ) -~ {xnt-I} we have

I

nn ,

= 1 - IT i Wi(x) I + tl ai I wi(x)l\ > 1,

for x E N(xn+l) such that Il7d.ii"'" I w'(x)i < a",. The existence of
x E N(xn+l) - {xn+l} such that Il7~I.i1'k ! w,(x)1 < a", follows from the fact
that limx~xn+J Il7~Li/lc i wi(x)i = O. Thus ai == 0 for every i= 1, ... , nand 0
is the unique best approximate to f (x) from W. To see that 0 is not a strongly
unique best approximate, we check the generalized Kolmogorov criterion.
We have

max (l(x) - 0)(-wl(x))
xEA

= max {O, sgn WI(XI')( -II'I(XI'))} = o.

Therefore the generalized Kolmogorov criterion,

max (l(x) - 0) w(x) ?: r li/i! II wd for every II' E W,
xEA

for some r > 0, fails to hold.
In a future note the authors will discuss the application of the result of this

paper to the notion of generalized strong unicity [3].
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