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1. INTRODUCTION

Let Cla, b] denote the space of real valued continuous functions, f, defined
on the compact nondegenerate real interval [a, b]. For fe Cla, ] the norm
of fis defined by || /|| = max,<,< | f(x)i. Let W denote a finite dimensional
subspace of Cla, b]. The function 7 € W is a best approximate to f'< Cla, b]
from W if

Wf—mll <l/—wl,
for all we W. If the inequality is strict for all we W, w £ =, then = is a
unique best approximate to f from W. Further, if for fe Cla, b] there exist
7 ¢ W and a positive number r, depending only on f, such that

f=wl E= =l rlm —wi,

for all we W then = is said to be a strongly unique best approximate to f
from W. An n-dimensional subspace W of Cla, b] is called a Haar subspace
if no nontrivial w € W vanishes at more than » -- 1 distinct points of [a, b].

In 1907 J. W. Young [5] proved that if W is a Haar subspace then every
element of Cla, b] possesses at most one best approximate from W. In 1918
A. Haar [2] proved that if every element of Cla, b] possesses a unique best
approximate from a finite dimensional subspace W then Wis a Haar subspace.
Thus a necessary and sufficient condition that every element of Cla, b]
possesses a unique best approximate from a finite dimensional subspace W
is that W be a Haar subspace. (It is known that every element of Cla, b)
possesses at least one best approximate from W)

In 1963 D. J. Newman and H. S. Shapiro [4] proved that every element of
Cla, b] possesses a strongly unique best approximate from a Haar subspace
of Cla, b]. Since a strongly unique best approximate is also a unique best
approximate it follows that a necessary and sufficient condition that every
element of Cla, b] possesses a strongly unique best approximate from a finite
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dimensional subspace W is that 4 be a Haar subspace. Thus if every element
of Cla, b] has a unique best approximate from a finite dimensional subspace
W then in fact every element of Cla, &] has u strongly unique best approximate
from W.

If there exists more than one best approximate to f'e Cia, 5] from a sub-
space W then no one of these best approximates can be a strongly unique best
approximate. A natural question is the following: for what subspaces W is it
true that every element of Cla, b] which possesses a unique best approximate
from W also possesses a strongly unique best approximate from W? The
purpose of this note is to characterize such subspaces.

2. MAIN THEOREM

THEOREM. FEvery element of Cla, b] which possesses a unique best approxi-
mate from a finite dimensional subspace W also possesses a strongly unique
best approximate from W if and only if W is a Haar subspace.

The necessity part of this theorem is a corollary of the more technical
Theorem 1 below. The sufficiency follows from the theorem of Newman and
Shapiro referred to earlier.

The following lemma which is essential to the proof of Theorem | is given
in [1].

Lemma | (Generalized Kolmogorov Criterion).  Let fe Cla, b], W be a
subspace of Cla, b], and = W. The real number r == 0 satisfies

W= wi el w e wl,
Jor all we W if and only if
max [f(x) = 7] wlx) = rlf =7 hilwi,
for all we W, where
A= dxela, bl f(x) — m(x) =i f— 7.
The following definitions are needed. For g(x) € Cla, b],

Z, - {xela, b): g(x) = 0}

Lo gly) 0.
sgng(y) = 0, glx) =0,
-1, glyy- 0.
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For wy,..., w, € Cla, b],

/\/‘1"1 3%y ”,n> - {g(x) & C[a; b]
g(x) = 3 aw/(x), ay ..., a, real constants}.
i=1

For fe Cla, b],

A(fy = A ={xela b): | f(x) =|[f1},
Tf ={meW:||f—=|| < f—wl|forallwe W}

We say the function f(x) defined on a subset P of [a, ] can be extended
continuously to [a, b] if there exists f(x) € Cla, b] such that f(x) = f(x)
for x € P. For convenience, we call the continuous extension f(x).

The proof of Lemma 2 follows from elementary arguments which we omit.

LEMMA 2. Assume the real-valued function f(x) has been defined contin-
uously on a set G C [a, b] such that G is the union of a finite number of closed
connected sets of [a, b]. Assume also that | f(x)| << 1 on G. Then f can be
extended continuously to all of [a, b] in such a way that | f(x)] <1 on
[a, ] — G.

The proof of Theorem 1 is by induction. The proof for n == 1 is given in
Lemma 3.

Lemma 3. Let 0 == w(x) € Cla, b]. Assume the subspace W = {w) is not
a Haar subspace on [a, b]. Further, assume that the real-valued function f(x)
has been defined on a finite number of points of [a, b], all contained in Z,. ,
such that | f(x)| = 1 for every x at which [ is defined. Then f can be extended
continuously to [a, b] in such a way that the unique best approximate to f from W
is not a strongly unique best approximate.

Proof.  Without loss of generality we assume ! w| = 1. Since W is not
a Haar subspace on [a, b], Z,,, the zero set of w(x) is not empty. Choose
xo€ Z, such that w(x) = 0, x % x,, x in some sufficiently small closed
connected nondegenerate half-neighborhood of x,, contained in [a, £]. Call
this neighborhood N(x,). Without loss of generality, we assume N(x,) was
chosen small enough such that there exists x' e [a, h] — N(x,) such that
w(x’) =~ 0. It may be that f(x,) has been previously defined to be +1 or —1
by the hypothesis of the lemma; if not, define f(x,) = +1. Without loss of
generality, assume sgn w(x) == sgn f(x,) == f{x) 1n N(x,) — {x;}. We
construct f(x) on {x"} U N(x,) as follows:

S =flx)ll —wHx))  xeNx,),
F(x") = —sgn w(x').



96 MCLAUGHLIN AND SOMERS

The function f(x) is defined on {x'} U N(x,) and possibly on a finite
number of points of Z,., as in the hypothesis, so by Lemma 2, we extend
f(x) continuously to [a, b] so that ' f(x)! << lon|a, b] - ({x'} U Z,). There-
fore, Ilf1 =1, {xy.xtCA4, and AC{x}' v Z,. Now we show that

If = {0}

Letabea real number. Suppose aw(x)e Tf. Then |/ — aw(x)|, -= | since
f—0j =1 1fa =0, f(x)— aw(x') - i I - al w(,\")‘| > 1. 1fa <0,
in N(x,) —{x,, we have |f(x) — aw(x)j =- j(ro)[ = wH)] - aw(x); =
|1 — w2 (x) —a!wx)| > 1 for 0 < ) —a. Hence @ == 0 and 0 is

the unique best approximate to f from W.
To see that 0 is not a strongly unique best approximate, we check the
generalized Kolmogorov criterion. We have

max (f(x) — 0) w(x) == max {0, f(x") w(x"),
= max {0, —sgn w(x’) - w(x")}; = 0.
Therefore the generalized Kolmogorov criterion,

max (f(x) —0)w(x) == r ) [l w] for every we W,
for some r > 0, fails to hold.

THEOREM 1. Let wy(x),..., w,(x) € Cla, b], be linearly independent functions.
Assume the subspace W == {wy,..,w,> Is not a Haar subspace on la, b).
Further, assume that the real—ualued Sfunction f(x) has been defined on a finite
number of points of [a, b}, all contained in ;_, Z,, , such that | f(x)] =1 for
each x for which [ is defined. Then f can be extended continuously to [a, b]
in such a way that the unique best approxiniate to f from W is not a strongly
unique best approximate.

Proof. The theorem is proved for # -= | in Lemma 3. Here we assume
n = 2. We assume the theorem has been proved for k = 1,2,...,n - 1;ie.,
if W is a k-dimensional subspace which is not a Haar subspace, & <. »n — |,
and f(x) has been defined on a finite number of points of [a, b} as in the
statement of the theorem, then f(x) can be extended continuously to [a, &]
such that the unique best approximate to f from W is not strongly unique.
We then show that the theorem can be proved for the case where W is an
n-dimensional subspace which is not a Haar subspace.

Without loss of generality, assume | w; !l == 1, 1 (i << n. Further,
without loss of generality, we assume w,(x) == 0 on {x,..., x,,}, # distinct
points of [a, b]. Consider the subspace W, == (w,...,w, . If W) is not
a Haar subspace on {x, ,..., x,,} then we can choose a basis for W, w/',..., w),_,
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and a rearrangement of the points {x, ,..., x,}, namely {x;’,..., x,,'}, such that
wy_1(x) = 0 on {x{,..., x,_{}. For convenience we drop the ‘“”’ notation
from the functions w,',..., w,,_», and from the points x;’,..., x,’. (We keep
the “’”” on w,,_,(x).) Consider the subspace W, == {wy ,..., w,_o>. If W, is not
a Haar subspace on {x,,...,, x,_,; then we can choose a basis for W,,
Wy'yees Wy, and a rearrangement of the points {x,,.., x,.;}, namely
{x1'5-e0» Xp_y), such that w, o(x) = 0 on {x{,..., x,_,}. For convenience we
drop the “”” notation from the functions wy’,..., w,, 5, and from the points
Xy yeer, Xp_p . Continuing in this manner as long as possible, we define
Wy s Woi1 sees Wiy, Where 0 <Ck << n — 1, inductively as above. When
ik ==n —1 the set w,, w,_; ..., w,,, reduces to the single function w, .
There are the following two cases to consider:

(I) The integer k issuch that I <{ & <C n — 1 and such that {wy ,..., w,.>
is a Haar subspace on {xy ,..., X1}

(lI) The integer k& as defined above is 0. Hence for every j,
I =<j<<n—1, {wy,..,w;» is not a Haar subspace on {x;,..., x;4}. In
particular, we have {w;(x)> is not a Haar subspace on {x, , x,}.

Case 1. The integer &, 1 <k <n—1, is such that {wy,., wy
is a Haar subspace on {x,..., x;,;}, and when & <#n — 1, we have
Wy peees Wiy Wig 5w Wiy > 1S 1ot @ Haar subspace on {xy.,..., X4} for
every j such that | <{j << un — k — 1. Note that our subspace W has as its
basis the functions wy ..., Wy, Wi.q «oco Wy_1, Wy, . We now drop the 7
notation from the functions wy_, ,..., w,,_, . We note that the definition of 4,
I <k << n — 1, insures that all the functions w;_(x),..., w,(x) vanish on the
Set {X1 vey Xpyy )

Since {wy ,..., wi»> is a Haar subspace on {x; ...., X3}, it follows directly
from the definition of a Haar subspace that we can interpolate at & points of
the set {x, ,..., x;.q}. Let w;'(x) € (wy oo, wio, | <X 7 <0 k have the following
values:

W (X)) = 1 wy'(x,) =0, P41,k -+,
Wy (Xpey) = 13 wy' (x;) == 0, P2, k41,

W (eey) = 1o wl(x) =0, itk kL

We note that w,’(x;) is unspecified, but we know that w;'(x,) =4 0, 1 < i <k,
since if not, the Haar condition on {w,..., w,> would be violated. Since
w,’,..., w,,” are linearly independent on {x,,..., x;..,}, they are linearly inde-
pendent on [a, b]. Thus, without loss of generality, we assume w;'(x) == wy(x),
1 <2 i << k. We construct f(x) on {x; ..., X1} C (Vopas Zu, » as follows:

f(xi) = Sgn H)i(xz')v l /\\/ [ \; k9
F(Xpy) = —L

640/14/2-2
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We remark that in this step f(x) has been defined to be -+1 or —1 only on
a finite number of points of ﬂ?:k_,,l Z,,, . We construct f continuously on the
remainder of [a, £] such that || f|| == 1, 0 is the unique best approximate to f
from W' = (w,.q,...,Ww,», an n — k “dimensional subspace of C[a, b],
and such that 0 is not a strongly unique best approximate from W’. Since
1 <in —k << n — 1, this is possible by the induction hypothesis.

Let a;, 1 << i < n be real numbers and suppose w(x) — X, , aw(x) € Tf.

Then we know |if—w] <1, since I|f— 0] = 1. If g; << 0 for some
7 ==1,.., k, then
Hf(x) — Wx)l = [ sgn wilx,) — awdx;) = | [ —a;| Wz‘(v\'i)il = L

Hence we have a; == 0, 1 =27 <{ k. But

P K
) — W)l = =1 =Y a;| =1+ a;>1ifa; >0
i-1 i1

for some i == 1,..., k. Hence a; == O forall / -= [,..., k, and w(x) has the form
W(x) == Y., a;wdx). Hence we seek the best approximation to f(x) from
W' = {W;.q,..., w,». But by the way f was constructed, this is 0; hence
a; = 0, k + 1 =X i <% n, and the proof for Case 1 is complete.

Case 11. There is no integer A&, | ~Z k < n - | such that {w; .., wy>
is a Haar subspace on {xy ,..., x;.q}. (v ..., Wy is the subspace that results
after n — k& steps in the constructive process described earlier and {x; ,..., x4}
is the corresponding set of points.) We have <wy: is not a Haar subspace on
{x1, X}, and all the functions wy'(x),..., w,, (x), w,(x) vanish on {x,, x,}.
We drop the > notation from the functions w,',..., w,, , . Without loss of
generality, assume w,(x;) — 0. Hence x, ¢ (), _, Ly

Case A. We assume that for some & e {1,..., n}, the set

Ze OO Z

1 LT Y

N7z

Ty

N, Zu',,) o [,

contains at least two distinct points of [a, »]. Denote these points by X, and
x;’. We construct fon {X;, x,'} C (V1,4 Z, as follows:

f(?/\) - Sgn M"h‘()?lr,)a

JOx) = —sgitwylx,).

In this step, f(x) has been defined to be -~1 or -1 on a finite number of
points of (\} ;.. Z,, . We construct f continuously on the remainder of



CHARACTERIZATION OF HAAR SUBSPACES 99

la, b] such that || f]] = 1, 0 is the unique best approximate to f from the
i1 — 1 “dimensional subspace W' = {Wy,..., Wi_1, Wiiq 5e-» Wny, and such
that 0 is not a strongly unique best approximate from W’. This is possible
by the induction hypothesis.

Let a;, 1 < i < n, be real numbers. Suppose Ww(x) = Y., awi(x) € Tf.
Then if a, << 0, | f(X,) — W(Xy)| == | sgn wi(X;) — apwi (X)) > 1, while if
a, >0, !f(xk) — w(x;)| > 1. Hence a; =0, and w(x) has the form
w(x) = 3, 11 awi(x) + Y1 @wix). Hence we seck the best approximation
to f(x) from W' = {(wy e, Wiy, Wiaq 5 .. But by the way f was con-
structed, this is 0; hence a;, = 0, | < i \i H, and the proof for Case A is
complete.

Case B. Assume the set (Zw1 NN Z“‘;_1 N Z“‘m NN Z“'n) —Z
does not contain at least two distinct points of [g, ] for any { == 1,..., n
We show that in this case, we can assume without loss of generality, that
(Z“‘l N-NZ, N Zw N-NZ, )= Z,, contains exactly one point
for every i = ] , 1. To see thls, suppose (Zy, 0N NZy)—2Z, = 7.
There exists x," € [a b] such that wy(x;") ## 0. Let [ — = {i £ 1: wt(xl) £ 0},
By our assumption, I ¢ @. Foreachiel, let o; # 0, 8; 5= 0 be chosen such
that a;w;(x;") + Biw(xy") == 0. Then we choose as our basis functions for W
the following functions:

w,(x), P¢l,
wix) = awi(x) i Bwix), iel

This is possible since the functions w,(x), i ¢ I and w,(x), { € I are all linearly
independent. For convenience, we drop the ‘="’ notation. Then we have
wi(xy) # 0and wy(x;") == Ofor 1 << i <{ n. Now suppose we have that the set
(Z, 0N Zy NZy N D Z,) — Z,, contains the point x;” for every
i=1,.,k—1, where 2 <{ k < n. Suppose also that

(Zw1 AN Z

Wg~1

N Zppy NN L) — Ly, = 9.
There exists x;” € [a, b] such that w,(x;) # 0. Let I = {i == k: wi{x;") = O}
By the assumption, I ¢ @. For each i€l let o; + 0, §; #+ 0 be chosen
such that a;wi(x;) + B;wi(x;') = 0. We choose as the basis functions for W
the following functions:
“’YL'(X)7 i ¢ [7
Wi(X) = awi(x) + Bwi(x), iel

This is possible since the functions wy(x), i ¢ I and wy(x), i € I are all linearly
independent. Then we have wy(x;") = 0and wi(x;) = Oforiel,1 <i <n,
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and wi(x,) == 0,i=4 k,i¢ 1, 1 1=l n Also Wi,y = widx)) -+ Bow(x,) o=
Powix;) # 0 for iel, 1 <1 i f{/ — 1 and wix;) = 0 for i¢l, | =1 i .

k — 1. Further, w(x;") = «, nﬁ -+ Baw (\' "y == 0forieland wix,’) == 0
for i¢ I, for every i =% j, i, j ] k — 1. For convenience, we drop the

notation from w,x), i € I. Hence we have

i CZy, NNz NZy O NZy)— Ly

LT K91 b "

By the induction hypothesis, we conclude that

Q\‘z 5 C (Zw NN Zm-

-1

N ZU' AR Zw ) Zu'

Vitl n i

holds for every i = I,..., n. If one of the above sets contains more than
one point Case A applies. Hence we have without loss of generality, that
(Zu nNnNZ, NZ,. NZ.)— == {x;"} for every i = ]
Without loss of generahty we assume H Wl = 1 holds for every 1 << 7 :'-i\i n.
We now claim that without loss of generality we can assume that Ior each
i = 1,..., n, there exist at most #n -- | points of [a, ] where w,(x) -= 0 and
wi(x) :4 0, each j v ;. Suppose for some / there exists a set of n point
{X; s-., X,} such that w(x) == 0 on {x, ..., X} and for some ; + i, w(x) £ 0
on{X; ,..., X,}. We show that then Case | applies. Indeed, we have w,{x) -~ 0
on {Xy ,.... X,;. We relabel the functions w, ,.... w, so that w(x) - = i¥,(x) and
wi(x) == wy(x). The relabeling of the functions wi{x). k -/ i, jas w, ..., TEN.
is arbitrary. Hence we have W - - {w, ..., W, where w,(x) == Oon{x, ,..., X,
and wy(x) = 0 on {X,,..., X,}. We drop the *” notation for conve-
nience.

Consider the subspace W, == (w, ..., w,_,». If W, is not a Haar subspace
on {xy... x,b} there exists w),_, € W, such that w;_(x) vanishes on
{xyves x5, 1} CHxy oo, Xy} Since wy(x) and w), (x) are linearly independent
on [a, b], we extend them to a basis of W, - - Qwy, wy'.o., w,, ;> We drop the
“"* notation from the functions and the points for convenience. Consider the
subspace W, - = Jwy ..., w,_ . If W,is not a Haar subspace on {xy ... x,, 4},
there exists w), ,(x)e W2 and  {xy,...x, o} C{xy.... x,, {} such that
wh_o(x) = 0 on {x;...., x; _,}. Since w;(x) # 0 on {vl ..... X, ), Wy(x) and
w;,_»(x) are linearly independent on [a, b] so we can extend them to a basis
for W, . Let the functions w,, w,’,..., w, _, form the basis. FFor convenience
we drop the *” notation.

We continue to define w,, , w,, 4 ..., w, where 2 = k s I inductively
as above as long as possible. Since w(x) = 0 on {r, veeen X, we know that if
in the process described above there exists no & = | 5uch that (wy ... oW s
a Haar subspace on {x,..., X..,} it is true for k == 1, l.e., Jwy> is a Haar
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subspace on {x, , x,}, and hence Case | applies. Thus in Case I[ we have the
following two properties:

(D (Oiwipn Zu) — Zu, = {xi} forevery k, 1 <<k <<,

(2) For each i, there exist at most # — 1 points where w,{x) = 0 and
wix) #0eachj #4 1, 1 «lij<n

(We note that Case 11 is characterized by the fact that ()., Ly, = 2)

Choose any point where w,(x) does not vanish. For explicitness, we choose
x,". Let x,., be a closest point to x," from (_, Z,.. . The point x,.,, exists
since (), Z,, is a closed, nonempty set. 0

We show that there exists some closed connected nondegenerate half-
neighborhood of x,_.,, N(x,.;), contained in [a, b] such that w,(x) - 0 in
Ni(x, 1) — {x,.q} If not, then in the interval between x," and x,.,, wy(x)
must have an infinite number of distinct zeros; call them {z;};2, . Then the
functions ws ..., w, are each nonzero on at most n - | points of {z;}7,.
Hence all the functions wy ,..., w, are zero on all but at most (n -~ 1)? points
of {27, . But then x,., is not the closest point of (., Z, to x,’. Hence
wi(x) has a finite number of zeros between x,” and x,., ."and for some
sufficiently small nondegenerate half-neighborhood of x,.;, N{(x,.1).
contained in [a, b], wy(x) = 0 in Ny(x,.;) — {x. . Since the function
wi(x) 4 0 in Ny(x,4,), each of the functions w,,...., w, has at most n — 1
zeros in N(x,.,) because of property (2) above of the subspace W. Hence
there exists a sufficiently small connected closed nondegenerate half-
neighborhood of x,.;, N(x,.,), contained in [a, b], such that w,(x) == 0 for
x € N(x,,;) — {xne1) holds for every i == 1,..., n.

It may be that f(x,,,) has been previously defined to be --1 or —1: this is
possible by the hypothesis of the theorem, since x,.; € (), Z,, . 1f not,
define f(x,,;) to be —-1. Without loss of generality, assume sgn w,(x) =
—f(x,:q) for x € N(x,.,) — {x,.,} holds for every 7 = 1,..., n. We construct
f(x)on {x/,..., x,/} U N(x,.,) as follows:

f('\’z',) = sgn H'z'(xil)a [ = ];"-5 n,

n

70 = Ot = T | e N,

2=1

As in Lemma 2, we extend f(x) continuously to [a, ] such that | fi = 1,
and | f(x)| <0 1 except possibly for some of the points of Z, \ {x',}; all the
extreme points of f(x) — 0 are contained in the set Z,, U {x:'}.

Let a,, | < i < n, be real numbers. Suppose w(x) = 37, aw,(x) € Tf.
Then!|f— wl| << 1, since | f — 0] = 1. If a; << O for some i = 1,..., n, then
|FOxy — W(x) = | sgn wi(x;) — awix) = | 1 —a; | wi(x;)]| > 1. Hence,
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a; > 0 for every i = 1,..., n. However, if g, > 0 for some k, then in
N(xp.y) — {xp.1) We have

0 = 50 = | Frd |1 =TT 1] = 3 awno)
. ga=1 R =1

= [ U= TT 10| 4 7o) 3 |
= ‘ 11— ﬁ Fwix) - ﬁ a; | Wz(x)li > 1,

for x€N(x,,) such that T, wi(x) <a.. The existence of
X € N(Xp4q) — {x,4} such that Hf:]'#k Pw(x)] << ap, follows from the fact
that lim,_,xm H?:Lm: ' wi{x)] = 0. Thus a, == 0 forevery i = 1,...nand 0
is the unique best approximate to f(x) from W. To see that 0 is not a strongly
unique best approximate, we check the generalized Kolmogorov criterion.
We have

max (f(x) — 0)(—wi(x))

= max {0, sgn w,(x; }(—wy(x;)); = 0.
Therefore the generalized Kolmogorov criterion,

max (Ff(x) —0)w(x) = r |l filw)]forevery we W,

for some r > 0, fails to hold.
In a future note the authors will discuss the application of the result of this

paper to the notion of generalized strong unicity [3].
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