Another Characterization of Haar Subspaces

H. W. MCLAUGHLIN AND K. B. SOMERS*

Rensselaer Polytechnic Institute, Troy, New York 12181 Communicated by E. W. Cheney

1. INTRODUCTION

Let C[a, b] denote the space of real valued continuous functions, f, defined on the compact nondegenerate real interval [a, b]. For $f \in C[a, b]$ the norm of f is defined by $||f|| = \max_{a \le x \le b} |f(x)|$. Let W denote a finite dimensional subspace of C[a, b]. The function $\pi \in W$ is a best approximate to $f \in C[a, b]$ from W if

$$\|f-\pi\|\leqslant \|f-w\|,$$

for all $w \in W$. If the inequality is strict for all $w \in W$, $w \neq \pi$, then π is a unique best approximate to f from W. Further, if for $f \in C[a, b]$ there exist $\pi \in W$ and a positive number r, depending only on f, such that

$$||f - w|| \ge ||f - \pi|| + r ||\pi - w||,$$

for all $w \in W$ then π is said to be a strongly unique best approximate to f from W. An *n*-dimensional subspace W of C[a, b] is called a Haar subspace if no nontrivial $w \in W$ vanishes at more than n - 1 distinct points of [a, b].

In 1907 J. W. Young [5] proved that if W is a Haar subspace then every element of C[a, b] possesses at most one best approximate from W. In 1918 A. Haar [2] proved that if every element of C[a, b] possesses a unique best approximate from a finite dimensional subspace W then W is a Haar subspace. Thus a necessary and sufficient condition that every element of C[a, b]possesses a unique best approximate from a finite dimensional subspace Wis that W be a Haar subspace. (It is known that every element of C[a, b]possesses at least one best approximate from W.)

In 1963 D. J. Newman and H. S. Shapiro [4] proved that every element of C[a, b] possesses a strongly unique best approximate from a Haar subspace of C[a, b]. Since a strongly unique best approximate is also a unique best approximate it follows that a necessary and sufficient condition that every element of C[a, b] possesses a strongly unique best approximate from a finite

^{*} Present address: Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24060.

dimensional subspace W is that W be a Haar subspace. Thus if every element of C[a, b] has a unique best approximate from a finite dimensional subspace W then in fact every element of C[a, b] has a strongly unique best approximate from W.

If there exists more than one best approximate to $f \in C[a, b]$ from a subspace W then no one of these best approximates can be a strongly unique best approximate. A natural question is the following: for what subspaces W is it true that every element of C[a, b] which possesses a unique best approximate from W also possesses a strongly unique best approximate from W? The purpose of this note is to characterize such subspaces.

2. MAIN THEOREM

THEOREM. Every element of C[a, b] which possesses a unique best approximate from a finite dimensional subspace W also possesses a strongly unique best approximate from W if and only if W is a Haar subspace.

The necessity part of this theorem is a corollary of the more technical Theorem 1 below. The sufficiency follows from the theorem of Newman and Shapiro referred to earlier.

The following lemma which is essential to the proof of Theorem 1 is given in [1].

LEMMA 1 (Generalized Kolmogorov Criterion). Let $f \in C[a, b]$, W be a subspace of C[a, b], and $\pi \in W$. The real number $r \ge 0$ satisfies

$$\|f-w\| \ge \|f-\pi\| + r \|\pi-w\|,$$

for all $w \in W$ if and only if

$$\max_{x \in A} [f(x) - \pi(x)] w(x) \ge r || f - \pi || || w ||,$$

for all $w \in W$, where

$$A = \{x \in [a, b] \colon |f(x) - \pi(x)| = ||f - \pi||\}.$$

The following definitions are needed. For $g(x) \in C[a, b]$,

$$Z_g = \{x \in [a, b] : g(x) = 0\}$$

sgn g(x) =
$$\begin{cases} 1, & g(x) > 0, \\ 0, & g(x) = 0, \\ -1, & g(x) < 0. \end{cases}$$

For $w_1, ..., w_n \in C[a, b]$,

$$\langle w_1, \dots, w_n \rangle = \{ g(x) \in C[a, b] :$$
$$g(x) = \sum_{i=1}^n a_i w_i(x), a_1, \dots, a_n \text{ real constants} \}.$$

For $f \in C[a, b]$,

$$A(f) = A = \{x \in [a, b] \colon |f(x)| = ||f|\},\$$

$$Tf = \{\pi \in W \colon ||f - \pi|| \le ||f - w|| \text{ for all } w \in W\}.$$

We say the function f(x) defined on a subset P of [a, b] can be extended continuously to [a, b] if there exists $\overline{f}(x) \in C[a, b]$ such that $f(x) = \overline{f}(x)$ for $x \in P$. For convenience, we call the continuous extension f(x).

The proof of Lemma 2 follows from elementary arguments which we omit.

LEMMA 2. Assume the real-valued function f(x) has been defined continuously on a set $G \subset [a, b]$ such that G is the union of a finite number of closed connected sets of [a, b]. Assume also that $|f(x)| \leq 1$ on G. Then f can be extended continuously to all of [a, b] in such a way that |f(x)| < 1 on [a, b] - G.

The proof of Theorem 1 is by induction. The proof for n = 1 is given in Lemma 3.

LEMMA 3. Let $0 \neq w(x) \in C[a, b]$. Assume the subspace $W = \langle w \rangle$ is not a Haar subspace on [a, b]. Further, assume that the real-valued function f(x)has been defined on a finite number of points of [a, b], all contained in Z_w , such that |f(x)| = 1 for every x at which f is defined. Then f can be extended continuously to [a, b] in such a way that the unique best approximate to f from W is not a strongly unique best approximate.

Proof. Without loss of generality we assume ||w|| = 1. Since W is not a Haar subspace on $[a, b], Z_w$, the zero set of w(x) is not empty. Choose $x_0 \in Z_w$ such that $w(x) \neq 0$, $x \neq x_0$, x in some sufficiently small closed connected nondegenerate half-neighborhood of x_0 , contained in [a, b]. Call this neighborhood $N(x_0)$. Without loss of generality, we assume $N(x_0)$ was chosen small enough such that there exists $x' \in [a, b] - N(x_0)$ such that $w(x') \neq 0$. It may be that $f(x_0)$ has been previously defined to be +1 or -1by the hypothesis of the lemma; if not, define $f(x_0) = +1$. Without loss of generality, assume $\operatorname{sgn} w(x) = \operatorname{sgn} f(x_0) = f(x_0)$ in $N(x_0) - \{x_0\}$. We construct f(x) on $\{x'\} \cup N(x_0)$ as follows:

$$f(x) = f(x_0)[1 - w^2(x)], \qquad x \in N(x_0), f(x') = -\operatorname{sgn} w(x').$$

The function f(x) is defined on $\{x'\} \cup N(x_0)$ and possibly on a finite number of points of Z_w , as in the hypothesis, so by Lemma 2, we extend f(x) continuously to [a, b] so that |f(x)| < 1 on $[a, b] - (\{x'\} \cup Z_w)$. Therefore, ||f|| = 1, $\{x_0, x'\} \subset A$, and $A \subset \{x'\} \cup Z_w$. Now we show that $Tf = \{0\}$.

Let *a* be a real number. Suppose $aw(x) \in Tf$. Then $||f - aw(x)|| \le 1$ since ||f - 0|| = 1. If a > 0, |f(x') - aw(x')| = |1 + a|w(x')| > 1. If a < 0, in $N(x_0) - \{x_0\}$ we have $|f(x) - aw(x)| = |f(x_0)[1 - w^2(x)] - aw(x)| = |1 - w^2(x) - a|w(x)| > 1$ for 0 < |w(x)| < -a. Hence a = 0 and 0 is the unique best approximate to *f* from *W*.

To see that 0 is not a strongly unique best approximate, we check the generalized Kolmogorov criterion. We have

$$\max_{x \in A} (f(x) - 0) w(x) = \max \{0, f(x') w(x')\}\$$

= max {0, -sgn w(x') · w(x')} = 0.

Therefore the generalized Kolmogorov criterion,

$$\max_{x \in A} (f(x) - 0) w(x) \ge r | f | | | w | | \text{ for every } w \in W,$$

for some r > 0, fails to hold.

THEOREM 1. Let $w_1(x), ..., w_n(x) \in C[a, b]$, be linearly independent functions. Assume the subspace $W = \langle w_1, ..., w_n \rangle$ is not a Haar subspace on [a, b]. Further, assume that the real-valued function f(x) has been defined on a finite number of points of [a, b], all contained in $\bigcap_{i=1}^{n} Z_{w_i}$, such that |f(x)| = 1 for each x for which f is defined. Then f can be extended continuously to [a, b]in such a way that the unique best approximate to f from W is not a strongly unique best approximate.

Proof. The theorem is proved for n = 1 in Lemma 3. Here we assume $n \ge 2$. We assume the theorem has been proved for k = 1, 2, ..., n - 1; i.e., if W is a k-dimensional subspace which is not a Haar subspace, $k \le n - 1$, and f(x) has been defined on a finite number of points of [a, b] as in the statement of the theorem, then f(x) can be extended continuously to [a, b] such that the unique best approximate to f from W is not strongly unique. We then show that the theorem can be proved for the case where W is an n-dimensional subspace which is not a Haar subspace.

Without loss of generality, assume $||w_i|| = 1$, $1 \le i \le n$. Further, without loss of generality, we assume $w_n(x) = 0$ on $\{x_1, ..., x_n\}$, *n* distinct points of [a, b]. Consider the subspace $W_1 = \langle w_1, ..., w_{n-1} \rangle$. If W_1 is not a Haar subspace on $\{x_1, ..., x_n\}$ then we can choose a basis for $W_1, w_1', ..., w_{n-1}'$

and a rearrangement of the points $\{x_1, ..., x_n\}$, namely $\{x_1', ..., x_n'\}$, such that $w'_{n-1}(x) = 0$ on $\{x_1', ..., x'_{n-1}\}$. For convenience we drop the "" notation from the functions $w_1', ..., w'_{n-2}$, and from the points $x_1', ..., x_n'$. (We keep the "" on $w'_{n-1}(x)$.) Consider the subspace $W_2 = \langle w_1, ..., w_{n-2} \rangle$. If W_2 is not a Haar subspace on $\{x_1, ..., x_{n-1}\}$ then we can choose a basis for W_2 , $w_1', ..., w'_{n-2}$ and a rearrangement of the points $\{x_1, ..., x_{n-1}\}$, namely $\{x_1', ..., x'_{n-1}\}$, such that $w'_{n-2}(x) = 0$ on $\{x_1', ..., x'_{n-2}\}$. For convenience we drop the "" notation from the functions $w_1', ..., w'_{n-3}$, and from the points $x_1', ..., x'_{n-1}$, namely $\{x_1', ..., x'_{n-1}\}$, such that $w'_{n-2}(x) = 0$ on $\{x_1', ..., x'_{n-2}\}$. For convenience we drop the "" notation from the functions $w_1', ..., w'_{n-3}$, and from the points $x_1', ..., x'_{n-1}$, where $0 \leq k \leq n-1$, inductively as above. When k = n-1 the set $w_n, w'_{n-1}, ..., w'_{k+1}$ reduces to the single function w_n . There are the following two cases to consider:

(I) The integer k is such that $1 \le k \le n-1$ and such that $\langle w_1, ..., w_k \rangle$ is a Haar subspace on $\{x_1, ..., x_{k+1}\}$.

(II) The integer k as defined above is 0. Hence for every j, $1 \leq j \leq n-1$, $\langle w_1, ..., w_j \rangle$ is not a Haar subspace on $\{x_1, ..., x_{j+1}\}$. In particular, we have $\langle w_1(x) \rangle$ is not a Haar subspace on $\{x_1, x_2\}$.

Case I. The integer $k, 1 \le k \le n-1$, is such that $\langle w_1, ..., w_k \rangle$ is a Haar subspace on $\{x_1, ..., x_{k+1}\}$, and when k < n-1, we have $\langle w_1, ..., w_k, w'_{k+1}, ..., w'_{k+j} \rangle$ is not a Haar subspace on $\{x_1, ..., x_{k+j+1}\}$ for every j such that $1 \le j \le n-k-1$. Note that our subspace W has as its basis the functions $w_1, ..., w_k, w'_{k+1}, ..., w'_{n-1}, w_n$. We now drop the "" notation from the functions $w'_{k+1}, ..., w'_{n-1}$. We note that the definition of k, $1 \le k \le n-1$, insures that all the functions $w_{k+1}(x), ..., w_n(x)$ vanish on the set $\{x_1, ..., x_{k+1}\}$.

Since $\langle w_1, ..., w_k \rangle$ is a Haar subspace on $\{x_1, ..., x_{k+1}\}$, it follows directly from the definition of a Haar subspace that we can interpolate at k points of the set $\{x_1, ..., x_{k+1}\}$. Let $w_i'(x) \in \langle w_1, ..., w_k \rangle$, $1 \leq i \leq k$ have the following values:

$$w_1'(x_{k+1}) = 1; \qquad w_1'(x_i) = 0, \qquad i \neq 1, k+1, \\ w_2'(x_{k+1}) = 1; \qquad w_2'(x_i) = 0, \qquad i \neq 2, k+1, \\ \vdots \\ w_k'(x_{k+1}) = 1; \qquad w_k'(x_i) = 0, \qquad i \neq k, k+1.$$

We note that $w_i'(x_i)$ is unspecified, but we know that $w_i'(x_i) \neq 0, 1 \leq i \leq k$, since if not, the Haar condition on $\langle w_1, ..., w_k \rangle$ would be violated. Since $w_1', ..., w_k'$ are linearly independent on $\{x_1, ..., x_{k+1}\}$, they are linearly independent on [a, b]. Thus, without loss of generality, we assume $w_i'(x) = w_i(x)$, $1 \leq i \leq k$. We construct f(x) on $\{x_1, ..., x_{k+1}\} \subset \bigcap_{j=k+1}^n Z_{w_j}$, as follows:

$$f(x_i) = \operatorname{sgn} w_i(x_i), \quad 1 \leq i \leq k,$$

$$f(x_{k+1}) = -1.$$

We remark that in this step f(x) has been defined to be +1 or -1 only on a finite number of points of $\bigcap_{i=k+1}^{n} Z_{w_i}$. We construct f continuously on the remainder of [a, b] such that ||f|| = 1, 0 is the unique best approximate to ffrom $W' = \langle w_{k+1}, ..., w_n \rangle$, an n - k "dimensional subspace of C[a, b], and such that 0 is not a strongly unique best approximate from W'. Since $1 \leq n - k \leq n - 1$, this is possible by the induction hypothesis.

Let a_i , $1 \le i \le n$ be real numbers and suppose $\overline{w}(x) = \sum_{i=1}^n a_i w_i(x) \in Tf$. Then we know $||f - \overline{w}|| \le 1$, since ||f - 0|| = 1. If $a_i < 0$ for some i = 1, ..., k, then

$$|f(x_i) - \overline{w}(x_i)| = |\operatorname{sgn} w_i(x_i) - a_i w_i(x_i)| = |1 - a_i |w_i(x_i)|| > 1.$$

Hence we have $a_i \ge 0, 1 \le i \le k$. But

$$|f(x_{k+1}) - \overline{w}(x_{k+1})| = \left| -1 - \sum_{i=1}^{k} a_i \right| = 1 + \sum_{i=1}^{k} a_i > 1 \text{ if } a_i > 0$$

for some i = 1,...,k. Hence $a_i = 0$ for all i = 1,...,k, and $\overline{w}(x)$ has the form $\overline{w}(x) = \sum_{i=k+1}^{n} a_i w_i(x)$. Hence we seek the best approximation to f(x) from $W' = \langle w_{k+1},...,w_n \rangle$. But by the way f was constructed, this is 0; hence $a_i = 0, k + 1 \leq i \leq n$, and the proof for Case I is complete.

Case II. There is no integer $k, 1 \le k \le n-1$ such that $\langle w_1, ..., w_k \rangle$ is a Haar subspace on $\{x_1, ..., x_{k+1}\}$. $(\langle w_1, ..., w_k \rangle$ is the subspace that results after n - k steps in the constructive process described earlier and $\{x_1, ..., x_{k+1}\}$ is the corresponding set of points.) We have $\langle w_1 \rangle$ is not a Haar subspace on $\{x_1, x_2\}$, and all the functions $w_2'(x), ..., w'_{n-1}(x), w_n(x)$ vanish on $\{x_1, x_2\}$. We drop the "'" notation from the functions $w_2', ..., w'_{n-1}$. Without loss of generality, assume $w_1(x_1) = 0$. Hence $x_1 \in \bigcap_{i=1}^n Z_{w_i}$.

Case A. We assume that for some $k \in \{1, ..., n\}$, the set

$$(Z_{w_1} \cap \cdots \cap Z_{w_{k-1}} \cap Z_{w_{k+1}} \cap \cdots \cap Z_{w_n}) \sim Z_{w_k}$$

contains at least two distinct points of [a, b]. Denote these points by \overline{x}_k and x_k' . We construct f on $\{\overline{x}_k, x_k'\} \subseteq \bigcap_{i=1, i \neq k}^n Z_{w_i}$ as follows:

$$f(\bar{x}_k) = \operatorname{sgn} w_k(\bar{x}_k),$$

$$f(x_k') = -\operatorname{sgn} w_k(x_k')$$

In this step, f(x) has been defined to be ± 1 or -1 on a finite number of points of $\bigcap_{i=1,i\neq k}^{n} Z_{w_i}$. We construct f continuously on the remainder of

[a, b] such that ||f|| = 1, 0 is the unique best approximate to f from the n-1 "dimensional subspace $W' = \langle w_1, ..., w_{k-1}, w_{k+1}, ..., w_n \rangle$, and such that 0 is not a strongly unique best approximate from W'. This is possible by the induction hypothesis.

Let a_i , $1 \le i \le n$, be real numbers. Suppose $\overline{w}(x) = \sum_{i=1}^n a_i w_i(x) \in Tf$. Then if $a_k < 0$, $|f(\overline{x}_k) - \overline{w}(\overline{x}_k)| = |\operatorname{sgn} w_k(\overline{x}_k) - a_k w_k(\overline{x}_k)| > 1$, while if $a_k > 0$, $|f(x_k') - \overline{w}(x_k')| > 1$. Hence $a_k = 0$, and $\overline{w}(x)$ has the form $\overline{w}(x) = \sum_{i=1}^{k-1} a_i w_i(x) + \sum_{i=k+1}^n a_i w_i(x)$. Hence we seek the best approximation to f(x) from $W' = \langle w_1, \dots, w_{k-1}, w_{k+1}, \dots, w_n \rangle$. But by the way f was constructed, this is 0; hence $a_i = 0$, $1 \le i \le n$, and the proof for Case A is complete.

Case B. Assume the set $(Z_{w_1} \cap \cdots \cap Z_{w_{i-1}} \cap Z_{w_{i+1}} \cap \cdots \cap Z_{w_n}) - Z_{w_i}$ does not contain at least two distinct points of [a, b] for any i = 1, ..., n. We show that in this case, we can assume, without loss of generality, that $(Z_{w_1} \cap \cdots \cap Z_{w_{i+1}} \cap Z_{w_n}) - Z_{w_i}$ contains exactly one point for every i = 1, ..., n. To see this, suppose $(Z_{w_2} \cap \cdots \cap Z_{w_n}) - Z_{w_1} = \emptyset$. There exists $x_1' \in [a, b]$ such that $w_1(x_1') \neq 0$. Let $I = \{i \neq 1: w_i(x_1') \neq 0\}$. By our assumption, $I \neq \emptyset$. For each $i \in I$, let $\alpha_i \neq 0$, $\beta_i \neq 0$ be chosen such that $\alpha_i w_i(x_1') + \beta_i w_i(x_1') = 0$. Then we choose as our basis functions for Wthe following functions:

$$w_i(x), \quad i \notin I, \ ar w_i(x) = lpha_i w_i(x) + eta_i w_i(x), \quad i \in I.$$

This is possible since the functions $w_i(x)$, $i \notin I$ and $\overline{w}_i(x)$, $i \in I$ are all linearly independent. For convenience, we drop the "-" notation. Then we have $w_1(x_1') \neq 0$ and $w_i(x_1') = 0$ for $1 < i \leq n$. Now suppose we have that the set $(Z_{w_1} \cap \cdots \cap Z_{w_{i+1}} \cap Z_{w_{i+1}} \cap \cdots \cap Z_{w_n}) - Z_{w_i}$ contains the point x_i' for every i = 1, ..., k - 1, where $2 \leq k \leq n$. Suppose also that

$$(Z_{w_1} \cap \cdots \cap Z_{w_{k-1}} \cap Z_{w_{k+1}} \cap \cdots \cap Z_{w_n}) - Z_{w_k} = \emptyset.$$

There exists $x_k' \in [a, b]$ such that $w_k(x_k') \neq 0$. Let $I = \{i \neq k: w_i(x_k') \neq 0\}$. By the assumption, $I \neq \emptyset$. For each $i \in I$, let $\alpha_i \neq 0$, $\beta_i \neq 0$ be chosen such that $\alpha_i w_k(x_k') + \beta_i w_i(x_k') = 0$. We choose as the basis functions for Wthe following functions:

$$w_i(x), \qquad i \notin I, \ \overline{w}_i(x) = lpha_i w_k(x) + eta_i w_i(x), \qquad i \in I$$

This is possible since the functions $w_i(x)$, $i \notin I$ and $\overline{w}_i(x)$, $i \in I$ are all linearly independent. Then we have $w_k(x_k) \neq 0$ and $\overline{w}_i(x_k) = 0$ for $i \in I$, $1 \leq i \leq n$,

and $w_i(x_k') = 0$, $i \neq k$, $i \notin I$, $1 \leq i \leq n$. Also $\overline{w}_i(x_i') = \alpha_i w_k(x_i') + \beta_i w_i(x_i') = \beta_i w_i(x_i') \neq 0$ for $i \in I$, $1 \leq i \leq k-1$ and $w_i(x_i') \neq 0$ for $i \notin I$, $1 \leq i \leq k-1$. Further, $\overline{w}_i(x_j') = \alpha_i w_k(x_j') + \beta_i w_i(x_j') = 0$ for $i \in I$ and $w_i(x_j') = 0$ for $i \notin I$, for every $i \neq j$, i, j = 1, ..., k - 1. For convenience, we drop the "-" notation from $\overline{w}_i(x)$, $i \in I$. Hence we have

$$\{x_k'\} \subset (Z_{w_1} \cap \cdots \cap Z_{w_{k+1}} \cap Z_{w_{k+1}} \cap \cdots \cap Z_{w_n}) - Z_{w_k}.$$

By the induction hypothesis, we conclude that

$$\{x_i'\} \subseteq (Z_{w_1} \cap \cdots \cap Z_{w_{i+1}} \cap Z_{w_{i+1}} \cap \cdots \cap Z_{w_n}) - Z_{w_i}$$

holds for every i = 1,..., n. If one of the above sets contains more than one point, Case A applies. Hence, we have without loss of generality, that $(Z_{w_1} \cap \cdots \cap Z_{w_{i-1}} \cap Z_{w_{i+1}} \cap \cdots \cap Z_{w_n}) - Z_{w_i} = \{x_i'\}$ for every i = 1,..., n. Without loss of generality we assume $||w_i|| = 1$ holds for every $1 \le i \le n$. We now claim that without loss of generality we can assume that for each i = 1,..., n, there exist at most n - 1 points of [a, b] where $w_i(x) = 0$ and $w_j(x) \ne 0$, each $j \ne i$. Suppose for some *i* there exists a set of *n* point $\{\overline{x}_1,..., \overline{x}_n\}$ such that $w_i(x) = 0$ on $\{\overline{x}_1,..., \overline{x}_n\}$ and for some $j \ne i, w_j(x) \ne 0$ on $\{\overline{x}_1,..., \overline{x}_n\}$. We show that then Case I applies. Indeed, we have $w_i(x) = 0$ on $\{\overline{x}_1,..., \overline{x}_n\}$. We relabel the functions $w_1,..., w_n$ so that $w_j(x) = \overline{w}_1(x)$ and $w_i(x) = \overline{w}_n(x)$. The relabeling of the functions $w_k(x), k \ne i, j$ as $\overline{w}_2,..., \overline{w}_{n-1}$ is arbitrary. Hence we have $W = \langle \overline{w}_1,..., \overline{w}_n \rangle$ where $\overline{w}_n(x) = 0$ on $\{\overline{x}_1,..., \overline{x}_n\}$ and $\overline{w}_1(x) \ne 0$ on $\{\overline{x}_1,..., \overline{x}_n\}$. We drop the "-" notation for convenience.

Consider the subspace $W_1 = \langle w_1, ..., w_{n-1} \rangle$. If W_1 is not a Haar subspace on $\{x_1, ..., x_n\}$ there exists $w'_{n-1} \in W_1$ such that $w'_{n-1}(x)$ vanishes on $\{x'_1, ..., x'_{n-1}\} \subset \{x_1, ..., x_n\}$. Since $w_1(x)$ and $w'_{n-1}(x)$ are linearly independent on [a, b], we extend them to a basis of $W_1 = \langle w_1, w'_2, ..., w'_{n-1} \rangle$. We drop the "" notation from the functions and the points for convenience. Consider the subspace $W_2 = \langle w_1, ..., w_{n-2} \rangle$. If W_2 is not a Haar subspace on $\{x_1, ..., x_{n-1}\}$, there exists $w'_{n-2}(x) \in W_2$ and $\{x'_1, ..., x'_{n-2}\} \subset \{x_1, ..., x_{n-1}\}$ such that $w'_{n-2}(x) = 0$ on $\{x'_1, ..., x'_{n-2}\}$. Since $w_1(x) \neq 0$ on $\{x'_1, ..., x'_{n-2}\}$, $w_1(x)$ and $w'_{n-2}(x)$ are linearly independent on [a, b], so we can extend them to a basis for W_2 . Let the functions $w_1, w'_2, ..., w'_{n-2}$ form the basis. For convenience we drop the "'" notation.

We continue to define w_n , w_{n-1} ,..., w_k where $2 \le k \le n-1$ inductively as above as long as possible. Since $w_1(x) \ne 0$ on $\{x_1, ..., x_n\}$, we know that if in the process described above there exists no k > 1 such that $\langle w_1, ..., w_k \rangle$ is a Haar subspace on $\{x_1, ..., x_{k+1}\}$ it is true for k = 1, i.e., $\langle w_1 \rangle$ is a Haar subspace on $\{x_1, x_2\}$, and hence Case I applies. Thus in Case II we have the following two properties:

(1) $(\bigcap_{i=1,i\neq k}^{n} Z_{w_i}) - Z_{w_k} = \{x_k\}$ for every $k, 1 \leq k \leq n$.

(2) For each *i*, there exist at most n-1 points where $w_i(x) = 0$ and $w_j(x) \neq 0$ each $j \neq i, 1 \leq i, j \leq n$.

(We note that Case II is characterized by the fact that $\bigcap_{i=1}^{n} Z_{w_i} \neq \emptyset$.)

Choose any point where $w_1(x)$ does not vanish. For explicitness, we choose x_1' . Let x_{n+1} be a closest point to x_1' from $\bigcap_{i=1}^n Z_{w_i}$. The point x_{n+1} exists since $\bigcap_{i=1}^n Z_{w_i}$ is a closed, nonempty set.

We show that there exists some closed connected nondegenerate halfneighborhood of x_{n+1} , $N_1(x_{n+1})$, contained in [a, b] such that $w_1(x) \neq 0$ in $N_1(x_{n+1}) - \{x_{n+1}\}$. If not, then in the interval between x_1' and x_{n+1} , $w_1(x)$ must have an infinite number of distinct zeros; call them $\{z_i\}_{i=1}^{\infty}$. Then the functions $w_2, ..., w_n$ are each nonzero on at most n - 1 points of $\{z_i\}_{i=1}^{\infty}$. Hence all the functions $w_2, ..., w_n$ are zero on all but at most $(n-1)^2$ points of $\{z_i\}_{i=1}^{\infty}$. But then x_{n+1} is not the closest point of $\bigcap_{i=1}^{n} Z_{w_i}$ to x_1' . Hence $w_1(x)$ has a finite number of zeros between x_1' and x_{n+1} , and for some sufficiently small nondegenerate half-neighborhood of x_{n+1} , $N_1(x_{n+1})$, contained in [a, b], $w_1(x) \neq 0$ in $N_1(x_{n+1}) - \{x_{n+1}\}$. Since the function $w_1(x) \neq 0$ in $N_1(x_{n+1})$, each of the functions $w_2, ..., w_n$ has at most n - 1zeros in $N_1(x_{n+1})$ because of property (2) above of the subspace W. Hence there exists a sufficiently small connected closed nondegenerate halfneighborhood of x_{n+1} , $N(x_{n+1})$, contained in [a, b], such that $w_i(x) \neq 0$ for $x \in N(x_{n+1}) - \{x_{n+1}\}$ holds for every i = 1, ..., n.

It may be that $f(x_{n+1})$ has been previously defined to be +1 or -1; this is possible by the hypothesis of the theorem, since $x_{n+1} \in \bigcap_{i=1}^{n} Z_{w_i}$. If not, define $f(x_{n+1})$ to be +1. Without loss of generality, assume sgn $w_i(x) =$ $-f(x_{n+1})$ for $x \in N(x_{n+1}) - \{x_{n+1}\}$ holds for every i = 1,..., n. We construct f(x) on $\{x_1',...,x_n'\} \cup N(x_{n+1})$ as follows:

$$f(x_i') = \operatorname{sgn} w_i(x_i'), \qquad i = 1, ..., n,$$

$$f(x) = f(x_{n+1}) \left[1 - \prod_{i=1}^n |w_i(x)| \right], \qquad x \in N(x_{n+1}).$$

As in Lemma 2, we extend f(x) continuously to [a, b] such that ||f|| = 1, and |f(x)| < 1 except possibly for some of the points of $Z_{w_1} \cup \{x'_1\}$; all the extreme points of f(x) - 0 are contained in the set $Z_{w_1} \cup \{x'_1\}$.

Let a_i , $1 \le i \le n$, be real numbers. Suppose $\overline{w}(x) = \sum_{i=1}^n a_i w_i(x) \in Tf$. Then $||f - \overline{w}|| \le 1$, since ||f - 0|| = 1. If $a_i < 0$ for some i = 1, ..., n, then $||f(x_i') - \overline{w}(x_i')| = |\operatorname{sgn} w_i(x_i') - a_i w_i(x_i')| = |1 - a_i| |w_i(x_i')|| > 1$. Hence, $a_i \ge 0$ for every i = 1, ..., n. However, if $a_k > 0$ for some k, then in $N(x_{n+1}) - \{x_{n+1}\}$ we have

$$|f(x) - \overline{w}(x)| = \left| f(x_{n+1}) \left[1 - \prod_{i=1}^{n} |w_i(x)| \right] - \sum_{i=1}^{n} a_i w_i(x) \right|$$
$$= \left| f(x_{n+1}) \left[1 - \prod_{i=1}^{n} |w_i(x)| \right] + f(x_{n+1}) \sum_{i=1}^{n} a_i |w_i(x)| \right|$$
$$= \left| 1 - \prod_{i=1}^{n} |w_i(x)| + \sum_{i=1}^{n} a_i |w_i(x)| \right| > 1,$$

for $x \in N(x_{n+1})$ such that $\prod_{i=1, i \neq k}^{n} |w_i(x)| < a_k$. The existence of $x \in N(x_{n+1}) - \{x_{n+1}\}$ such that $\prod_{i=1, i \neq k}^{n} |w_i(x)| < a_k$ follows from the fact that $\lim_{x \to x_{n+1}} \prod_{i=1, i \neq k}^{n} |w_i(x)| = 0$. Thus $a_i = 0$ for every i = 1, ..., n and 0 is the unique best approximate to f(x) from W. To see that 0 is not a strongly unique best approximate, we check the generalized Kolmogorov criterion. We have

$$\max_{x \in \mathcal{A}} (f(x) - 0)(-w_1(x))$$

= max {0, sgn w_1(x_1')(-w_1(x_1'))} = 0.

Therefore the generalized Kolmogorov criterion,

$$\max_{x \in A} (f(x) - 0) w(x) \ge r ||f|| ||w|| \text{ for every } w \in W,$$

for some r > 0, fails to hold.

In a future note the authors will discuss the application of the result of this paper to the notion of generalized strong unicity [3].

References

- 1. M. W. BARTELT AND H. W. MCLAUGHLIN, Characterization of strong unicity in approximation theory, J. Approximation Theory 9 (1973), 255-266.
- H. W. MCLAUGHLIN AND K. B. SOMERS, A generalization of strong unicity, Amer. Math. Soc. Notices 20 (1973).
- D. J. NEWMAN AND H. S. SHAPIRO, Some theorems on Chebyshev approximation, Duke Math. J. 30 (1963), 673-681.
- 5. J. W. YOUNG, General theory of approximation by functions involving a given number of arbitrary parameters, *Trans. Amer. Math. Soc.* 8 (1907), 331-344.